본문 바로가기

Posts by PinkWink

(1380)
[공업수학] Green 정리 2009. 11. 22. 01:27 본 자료는 국립 창원대학교 메카트로닉스 공학부 학생을 대상으로 한 공업수학 수업 자료입니다. 본 자료는 수업의 교재인 공업수학I 개정3판 (고형준 외, 도서출판 텍스트북스) 의 내용을 재구성한 것으로 수업보조 자료 이외의 목적이 없음을 알립니다. 위 그림에서 반시계 방향을 곡선의 양의 방향, 시계방향을 곡선의 음의 방향이라고 합니다. 곡선을 따라 걸을때 곡선의 안쪽을 향하는 것이 왼손이면 양의 방향, 오른손이면 음의 방향이 되지요. 기호로는 선적분을 의미하는 원에 화살표를 살짝 달아줍니다. 위에 그린정리가 나오는데요. 어떤 양의 방향 선적분은 위에서처럼 이중적분을 구성할때 cross된 편미분의 차로 구성하게 됩니다. 영역 R에서 양의 방향 곡선을 고려하면 위 범위에서 이렇게 구해지구요 위 그림에서 위와 ..
[공업수학] 극좌표계에서의 이중적분 2009. 11. 22. 01:20 본 자료는 국립 창원대학교 메카트로닉스 공학부 학생을 대상으로 한 공업수학 수업 자료입니다. 본 자료는 수업의 교재인 공업수학I 개정3판 (고형준 외, 도서출판 텍스트북스)의 내용을 재구성한 것으로 수업보조 자료 이외의 목적이 없음을 알립니다. 위 그림들에서 (a)의 넓이를 고려해보죠. 정적분의 일반적인 현상을 고려하기 위해 그림 (b)처럼 나누고, 그 중 하나를 확대해보면 (c)처럼 나타나게 될것입니다. 이때 (c)의 넓이는 두 부채꼴의 넓이의 차이므로라고 생각할 수 있을 것입니다. 위 식에서 1/2(r_k+1 + r_k)의 부분은 반지름의 평균으로 볼 수 있겠네요. 그리고 delta r 과 delta theta 로 표현가능하구요.위 그림 (b)에서 무한등분으로 다시 표현하면 위 수식처럼 표현 가능합니..
아그리파를 통해 본 성공하는 이인자의 조건 2009. 11. 16. 02:24 마르쿠스 빕사니우스 아그리파 (Marcus Vipsanius Agrippa) 기원전 63년부터 서기 12년까지 살았던 고대 로마의 군인입니다. 조금 더 살았다면 제정 로마의 초대황제 아우구스투스(옥타비아누스)의 뒤를 이어 제2대 황제가 되었을 사람으로 옥타비아누스의 오른팔이자 그림자와 같은 사람이었습니다. 오늘 제가 이야기할 2인자의 교과서라고 볼 수 있습니다. 여기서 말하는 성공한 2인자라는 것의 정의를 좀 해두어야겠습니다. 일단 그림자인 자신에게 빛의 역활을하는 1인자는 자신의 목표를 이루어야합니다. 즉, 1인자는 성공해야하며, 진심으로 그 성공에 없어서는 안되는 밑거름이어야하며, 그러면서 자신의 역활에 만족해야합니다. 물론 자신의 행복한 삶 또한 이루어야하는 거죠. 이런 것을 성공한 2인자의 조건으..
Strapdown system과 Stable Platform System 2009. 11. 16. 00:38 IMU (Inertial Measurement Unit)! Inertial Navigation 이라는 것은 회전각속도(gyro)계와 직선 가속도계(accelerometer)를 이용해서 회전각(orientation)과 위치(position)을 검출하는 기술을 이야기합니다. 여기서 확장해서 공간상의 3축 직교좌표계에 대해 검출하는 것을 특별히 IMU (Inertial Measurement Unit) 이라고 합니다. 이 IMU는 크게 두가지로 나눠지는데요. 그것이 Stable Platform System과 Strapdown System입니다. 아 그리고 미리 말씀드리는데 흔히들 말씀하시는 각종 적분에러(드리프트오차)나 여러 외란으로 인한 필터의 설계는 이 이야기와는 다른 이야기입니다. 이 분류는 단시 Gimb..
[공업수학] 이중적분 2009. 11. 15. 15:24 이중적분 이번에는 2중적분에서 구간의 설정과 간단한 예제. 그리고 질량중심과 관성모멘트의 도출을 간단히 다뤄보겠습니다. 본 자료는 국립 창원대학교 메카트로닉스 공학부 학생을 대상으로 한 공업수학 수업 자료입니다. 본 자료는 수업의 교재인 공업수학I 개정3판 (고형준 외, 도서출판 텍스트북스) 의 내용을 재구성한 것으로 수업보조 자료 이외의 목적이 없음을 알립니다. 이중적분 이중적분을 위에서 처럼 순서로 생각해보면 두가지로 생각해 볼 수 있을 겁니다. (뭘 먼저 적분하는가.. 하는 문제 말이죠) 정적분이라고 생각해야하는 것이니 먼저 적분되는 쪽은 다른쪽 변수로 함수화된 구간으로 주어져야할 것입니다. 위 문제를 보죠. 위 구간에서 이중적분을 수행해달라는 건데요. x쪽을 먼저 적분해야하는 걸로 보면, x=y부..
[공업수학] 경로의 무관성 2009. 11. 15. 15:04 본 자료는 국립 창원대학교 메카트로닉스 공학부 학생을 대상으로 한 공업수학 수업 자료입니다. 본 자료는 수업의 교재인 공업수학I 개정3판 (고형준 외, 도서출판 텍스트북스) 의 내용을 재구성한 것으로 수업보조 자료 이외의 목적이 없음을 알립니다. 경로의 무관성 위와 같이 좌측의 미분을 우측처럼 표현할 수 있을때, 완전미분방정식이라고 합니다. 위 처럼 Phi가 결정되면 P나 Q함수의 모양이 만들어지겠죠. 이런걸 완전미방이라고 한다는 겁니다. 만약 위와 같이 생각해보면, 하나의 함수로 표현할 수 없습니다. 이러면 완미방이 못되는 거죠. 완미방이면서 경로에 무관하면, 원함수에 경로의 처음과 끝점만 넣어주면 됩니다. 여기서 경로에 무관하다는 것은 어떤 경로로 선적분을 수행해도 같은 결과가 나타나는 것을 의미합니..
[C/C++] 재귀호출 2009. 11. 15. 14:43 재귀호출 재귀호출은 함수가 내부에서 자기 자신을 호출을 하는 것을 이야기합니다. 자칫 치명적인 오류를 범할 수도 있고, 꼭 재귀호출을 사용하지 않더라도 분명 많은 방법으로 동일한 결과를 얻을 수 있습니다. 그러나, 어떤 알고리즘을 구현하다 보면 재귀호출은 분명 매력적인 방법입니다. 그 중에서 오늘은 팩토리얼(Factorial), 피보나치(Fibonacci)와 하노이(Hanoi)탑 문제를 재귀호출로 구현하는 것을 보여드리겠습니다. 본 자료는 국립 창원대학교 메카트로닉스 공학부 학생을 대상으로 한 컴퓨터 언어 응용 수업 자료입니다. 본 자료는 수업의 교재인 (핵심요약판) C++로 시작하는 객체지향 프로그래밍 (Y. Daniel Liang 저, 권기형 / 김응성 공역) 의 내용을 재구성한 것으로 수업보조 자료..
유럽의 시작, 로마. 그 강대함의 근원은 어디인가? 2009. 11. 10. 07:54 기원전 753년부터 서기 476년까지 1229년간 존속한 나라 고대 로마, 그 후 동로마제국이 멸망한 1453년까지로 확장해서 본다면, 무려 2206년 동안이나 존재한 나라 로마. 존재했다기 보다는 지금의 북아프리카와 중동의 서부, 중남부 유럽일대를 지배했던 나라, 고대 로마는 지구상의 역사이래 그와 같은 영향력과 영속력에서 따라올 나라가 없습니다. 그런 로마라는 국가가 왜 멸망했는가라는 주재의 책이나 연구물은 정말 많습니다. 그러나 왜 로마가 그리도 강대하고 그렇게 오래 살아남을 수 있었는가를 다루는 경우는 잘 보질 못했습니다. 비록 저의 지식이 그때 그때의 궁금증을 확인하기 위해 인터넷을 뒤진 것을 빼면 시오노 나나미씨의 로마인 이야기를 읽은 것에 불과하지만, 그래도 나름대로 그 이유를 이야기해보고 ..

반응형